

Introduction

Copper conductor cables transport the electrical current, they can be made of one rope yarn (a group formed by various wires assembled in spiral in the same direction), or of many, obtaining then the rope (many rope yarns assembled in opposite direction) the wire's diameter will give us the conductor's flexibility.

Copperbraids are electrical conductors interweaved, that allow a lot of flexibility in electrical conditions.

The materials used in our products are:

- Copper: red copper, oxigenless copper, tinned copper, enameled copper.
- Iron: galvanised iron.
- Alloys: alloys for compensation cables and thermocouple extension.
- Other metals to special order.

The theorical section is given by the sum of the wire's sections that form the conductor, it should not be confused with the nominal nor with the apparent section.

We manufacture sections from 0.062 mm2 to 1.000 mm2, with wires of 0.04, 0.05, 0.07, 0.10, \dots mm2.

The dimensions are orientative, in the braids the theorical sections are half of those apparent.

Applications: The products that appear in this catalog are orientative, to special order or client's specifications, we can manufacture any variable. Do not doubt to consult with our technical department that will advise you in any question you ask.

Electrical equipment (circuit brakers, section switchs, contactors, lightning conductors, transformer centres, etc.); earthings; protection of electrical equipment; union between distribution rods and vibratory machines; expansion coupling between rod's setting; equipments for welding services; antiparasite braids; electrolysis; earthing settings; cables for brushes; cables for tiristors, relays and condensers; braids for loud-speaker's moving Coils; cables for induction furnaces; cables for feeding of electromagnets; cables for temperature mesure (extension or compensation cables); cables for high-frecuency coils (LITZ wires).

Presentation: Rolls, wooden coils, plastic coils according to DIN 46.399.

Flexible and extra-flexible bare copper conductors also of tinned copper

Specifications: Conductors formed by fine, glossy soft electrolytic copper wire. Our conductors may have a circular or square cross-section.

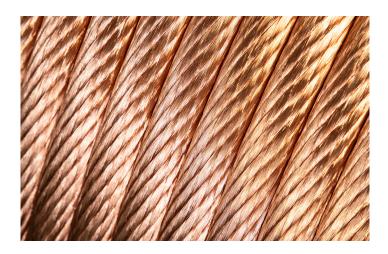
Applications: Connections, manufacture of electrical equipment, protection material and earthing, current taps, lightning conductors, transformer centres, etc.

Flexible and extra-flexible conductors

Referencia	Sección mm ²	Ømm	N° total hilos
Reference	Section mm ²	Ømm	Total no. of wires
NF-14N° 1	0,75	1,15	98
NF-14N° 2	1	1,4	126
NF-14N° 3	1,5	1,9	189
NF-14N° 4	2,5	2,3	322
NF-14N° 5	4	3,1	511
NF-14N° 6	6	4	770
NF-14N° 7	10	4,9	1.274
NF-14N° 8	16	6,3	2.044
NF-14N° 9	25	8,25	3.185

Presentation: 50, 100 and 200 meters rolls.

We can manufacture, to special order, conductors according to DIN 46438, in red copper or oxigenless copper.


Approximate weights: It should be 10 grams for each mm² the meter.

For example: $1 \text{ mm}^2 = 10 \text{ grams the meter}$

Dimensions: Changing the composition allows to reduce the conductors dimensions as well as the weights_i because the effective section is bigger than the nominal.

These features are given only as a guidance and may be subject to modification.

Applications: Connections, manufacture of electrical equipment, protection material and earthing, current taps, lightning conductors, transformer centres, etc.

Conductores con hilos de 0,10 mm de diámetro en cobr	e estañado
Tinned copper conductors with wires of 0,10 mm of dia	meter

Referencia Reference	Sección mm ² Section mm ²	Ø mm Ø mm	N° total hilos Total no. of wires
Nererence	Section min	<i>A</i>	
NF-14N° 1E	0,75	1,15	98
NF-14N° 2E	1	1,4	126
NF-14N° 3E	1,5	1,9	189
NF-14N° 4E	2,5	2,3	322
NF-14N° 5E	4	3,1	511
NF-14N° 6E	6	4	770
NF-14N° 7E	10	4,9	1.274
NF-14N° 8E	16	6,3	2.044
NF-14N° 9E	25	8,25	3.185

Presentation: 50, 100 and 200 meter s rolls.

We can manufacture, to special order, tinned copper conductors according to DIN 46438.

Approximate weights: It should be 10 grams for each mm² the meter.

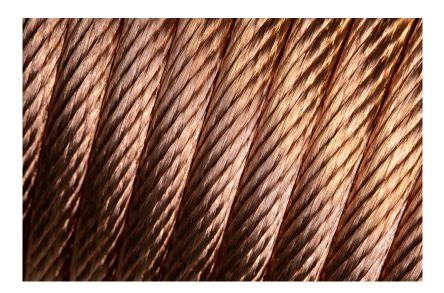
For example: 1mm²=10gms the meter

Dimensions: Changing the composition allows to reduce the conductors dimensions as well as the weights, because the effective section is bigger than the nominal.

These features are given only as a guidance and may be subject to modification.

Applications: Connections, manufacture of electrical equipment, protection material and earthing, current taps, lightning conductors, transformer centres, etc

Referencia	Sección mm ²	Ømm	N° total hilos
Reference	Section mm ²	Ømm	Total no. of wires
NF-15 nº 1	2,5	2,4	49
NF-15 nº 2	4	3,5	84
NF-15 n° 3	6	3,7	126
NF-15 nº 4	10	5	203
NF-15 n° 5	16	5,7	329
NF-15 n° 6	25	8	511
NF-15 nº 7	35	9,4	722
NF-15 nº 8	50	11	1.026
NF-15 n* 9	80	13,5	1.615
NF-15 n° 10	95	16	1.938
NF-15 n° 11	120	18	2.451
NF-15 n° 12	150	19	3.078
NF-15 n° 13	185	21	3.768
NF-15 n° 14	240	23,5	4.902
NF-15 n° 15	300	27	6.118
NF-15 n° 16	400	31	8.113
NF-15 n° 17	500	34,5	10.241


Presentation: 100 meter rolls or in wooden coils, depending on the section.

Approximate weights: It should be 10 grams for each mm² the meter.

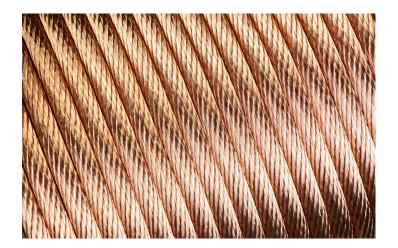
For example, one section of $6 \text{ mm}^2 = 60 \text{ grams/meter}$; $300 \text{ mm}^2 = 3.000 \text{ grams/meter}$.

Dimensions: The given dimensions are orientative, and may be subject to modification in any moment, depending on the rope's composition or the cable's step.

Applications: Connections, manufacture of electrical equipment, protection material and earthing, current taps, lightning conductors, transformer centres, etc.

Conductores de cobre estañado con hilos de 0,25 mm de diámetro Tinned copper conductors with wires of 0,25 mm of diameter

Reference Reference	Section mm ² Section mm ²	Ø mm Ø mm	N° total hilos Total no. of wires
NF-15 n° 1E	2,5	2,4	49
NF-15 n° 2E	4	3,5	84
NF-15 n° 3E	6	3,7	126
NF-15 n° 4E	10	5	203
NF-15 n° 5E	16	5,7	329
NF-15 n° 6E	25	8	511
NF-15 nº 7E	35	9,4	722
NF-15 n° 8E	50	11	1.026
NF-15 n° 9E	80	13,5	1.615
NF-15 n°10E	95	16	1.938
NF-15 nº11E	120	18	2.451
NF-15 n°12E	150	19	3.078
NF-15 n°13E	185	21	3.768
NF-15 n°14E	240	23,5	4.902
NF-15 n°15E	300	27	6.118
NF-15 n°16E	400	31	8.113
NF-15 nº17E	500	34,5	10.241


Presentation: 100 meter rolls or in wooden coils, depending on the section.

Approximate weights: It should be 10 grams for each mm² the meter.

For example, for one section of 6 $mm^2 = 60$ grams/meter, as well as 300 $mm^2 = 3.000$ grams/meter.

Dimensions: The dimensions are given onlyas a guidance, in any moment they can be modified, depending on the rope's composition or the cable's step.

Applications: Connections, manufacture of electrical equipment, protection material and earthing, current taps, lightning conductors, transformer centres, etc.

Tubular or laminated copper braids al so of tinned copper

Specifications: Made from fine, glossy 50ft electrolytic copper wire. Highly flexible and low bending radius.

Applications: Earthing, vibratory machines, connection bridges to transformers, manufacture of electrical equipment, etc.

Flexible conductor braids

Flat, square, square insulated with clear pvc, round conductors with copperbraid coatings, braids to screen, special braids small sections, round braids, round braids with clear pvc.

Referencia	Sección mm ² Section mm ²	Dimensiones Dimensions	N° total hilos Total no. of wires	Composición
NF-16Nº 1	2,5	5×1	144	16 × 9
NF-16Nº 2	5	8 × 1,1	288	24 × 12
NF-16Nº 3	8	8 × 1,5	456	24×19
NF-16Nº 4	10	$10 \times 1,5$	576	24 imes 24
NF-16Nº 5	16	15×2	896	32 × 28
NF-16Nº 6	20	20 × 2	1120	32 imes 35
NF-16Nº 7	25	25 × 2	1408	32×44
NF-16Nº 8	30	25 × 2,5	1696	32×53
NF-16Nº 9	40	25 × 3	2240	32 × 70
NF-16Nº10	50	30 × 3,5	2816	32 × 88
NF-16Nº11	60	30×4	3392	32×107
NF-16Nº12	75	30 × 5	4224	32×132
NF-16Nº13	90	35×5	5088	32×159
NF-16Nº14	100	40×5	5632	32 × 176
NF-16Nº15*	120	50 × 5	3840	48 × 80
NF-16Nº16*	150	60 × 5	4800	48×100
NF-16Nº17*	200	65 × 5	6336	48×132
NF-16Nº18*	250	70 × 8	7872	48×164
NF-16Nº19*	300	70 × 10	9600	48 imes 200
NF-16N°20*	400	80 × 10	12768	48 × 266
NF-16N°21*	500	100 × 10	15936	48 × 332

Estas trenzas están fabricadas con fillos de 0,20 mm de diametro
* Trese braids are inantifactured with wires of 0,90 mm of diameter

Presentation: Rolls of 6, 10, 15, 20, 25, 50, 100 and 200 meters.

Approximate weights: It should be 10 grams for each mm² the meter.

For example: $5 \text{ mm}^2 = 50 \text{ grams the meter}$

Dimensions: To special order, and if the braid allows it, we can modify them. To special order, we can manufacture braids with clear PVC

These features are given only as a guidance and may be subject to modification.

Applications: Earthing connections, vibratory machines, connection bridges to transformers, manufacture of electrical equipment, etc.

Trenzas con hilo de 0,15 y 0,20 mm de diámetro en cobre estañado Tinned copper braids with wires of 0,15 and 0,20 mm of diameter

Referencia Reference	Sección mm ² Section mm ²	Dimensiones Dimensions	N° total hilos Total no. of wires	Composición Composition
NF-16Nº 1E	2,5	5 imes 1	144	16 × 9
NF-16N° 2E	5	8 × 1,1	288	24 imes 12
NF-16N° 3E	8	8 × 1,5	456	24×19
NF-16N° 4E	10	10 imes 1,5	576	24 imes 24
NF-16Nº 5E	16	15 imes 2	896	32 × 28
NF-16N° 6E	20	20 × 2	1120	32 imes 35
NF-16N° 7E	25	25 imes 2	1408	32 imes 44
NF-16N° 8E	30	25 × 2,5	1696	32 imes 53
NF-16N° 9E	40	25 × 3	2240	32×70
NF-16Nº10E	50	30 × 3,5	2816	32 imes 88
NF-16Nº11E	60	30×4	3392	32 imes 107
NF-16Nº12E	75	30×5	4224	32 imes 132
NF-16Nº13E	90	35 imes 5	5088	32×159
NF-16Nº14E	100	40×5	5632	32×176
NF-16Nº15*E	120	50×5	3840	48 × 80
NF-16N°16*E	150	60 × 5	4800	48 imes 100
NF-16N°17*E	200	65 × 5	6336	48 imes 132
NF-16Nº18*E	250	70 × 8	7872	48 imes 164
NF-16N°19*E	300	70 × 10	9600	48 × 200
NF-16N°20*E	400	80 × 10	12768	48 imes 266
NF-16N°21*E	500	100 × 10	15936	48 × 332

* Estas trenzas están fabricadas con hilos de 0,20 mm de diámetro * These braios are manufactured with wires of 0,20 mm of diameter

Presentation: Rolls of 6, 10, 15, 20, 25, 50, 100 and 200 meters.

Approximate weights: It should be 10 grams for each mm² the meter.

For example: 5 mm2 = 50 grams the meter

Dimensions: To special order, and if the braid allows it, we can modify them. To special order, we can manufacture braids with clear PVC.

These features are given only as a guidance and may be subject to modification.

Applications: Earthing connections, vibratory machines, connection bridges to transformers, manufacture of electrical equipment, etc.

Trenzas cuadradas de cobre rojo Square red copper braids						
Referencia Reference	Sección mm ² Section mm ²	Dimensiones Dimensions	Ø hilo Ø wire	N° total hilos Total no. of wires		
NF-20Nº 1	1	1,2 × 1,2	0,15	56		
NF-20Nº 2	1,5	1,5 × 1,5	0,15	88		
NF-20Nº 3	2,5	2,1 × 2,1	0,15	144		
NF-20N° 4	4	2,8 × 2,8	0,15	224		
NF-20N° 5	6	3,3 × 3,3	0,15	344		
NF-20N° 6	10	4,3 × 4,3	0,15	568		
NF-20Nº 7	16	$5,4 \times 5,4$	0,15	912		
NF-20N° 8	25	7 × 7	0,15	1.416		
NF-20N° 9	35	8 × 8	0,15	1.980		
NF-20N°10	50	10 × 10	0,20	1,584		
NF-20N°11	75	12 × 12	0,25	1.524		
NF-20Nº12	95	14×14	0,25	1.932		

They are made of wires of 0.05, 0.07 and 0.10 mm of diameter.

To special order, we can manufacture them with other sections and tinned copper.

Presentation: 50 and 100 meters rolls, plastic coils accordins to DIN 46 399 or wooden coil.

Approximate weights: It should be 10 grams for each mm² the meter.

For example: $35 \text{ mm}^2 = 350 \text{ grams}$ the meter

Dimensions: These features are siven only as a guidance and may be subject to modification. **Applications:** Weldins services and union of the contact line with the catenary in high-speed trains.

Conductores redondos con cubierta de trenza de cobre S/DIN 46440 en cobre rojo Round conductors with copperbraid coatings S/DIN 46440 in red copper

Referencia Reference	Sección nominal Nominal section mm ²	Sección efectiva Effective section Ømm	Dimensiones exteriores External dimensions	N° hilos conduc. No. wires of conduc.	Ø hilo mm Ø wire mm	Nº hilos cubierta No. wires of coating	Ø hilo mm Ø wire mm
CT-0,5-05/01	0,5	0,5	7,1	130	0,05	32	0,1
CT-0,75-05/01	0,75	0,75	1,4	266	0,05	32	0,1
CT-1-0,5/01	1	7	1,5	266	0,05	64	0,1
CT-1,5-05/01	1,5	1,5	2	525	0,05	64	0,1
CT-2,5-07/01	2,5	3	2,9	651	0,07	64	0,1
CT-4-07/01	4	4,5	3,6	1.036	0,07	64	0,1
CT-6-07/01	6	6,8	4,5	1.575	0,07	96	0,1
CT-10-07/01	10	11	5,5	2.562	0,07	128	0,1
CT-16-07/01	16	17,5	7	4.116	0,07	192	0,1
CT-25-01/01	25	27	8,9	3.234	0,1	192	0,1
CT-35-01/01	35	37	10,5	4.508	0,1	240	0,1
CT-50-01/01	50	53,5	12,5	6.468	0,1	360	0,1
CT-70-01/01	70	73	14,7	8.967	0,1	360	0,1
CI-70-01/01	10	13	14,1	0.907	0,1	300	0,1

Presentation: Coils according to DIN 46399 in rolls or wooden coils depending on the section.

Approximate weights: We will take +/- 12% of the effective section up to 16 mm², +/- 8% from 25 mm² up to 50 mm² and +/-6% above 70 mm².

Dimensions: These features are given only as a guidance and may be subject to modification in any moment.

To special order, we can manufacture them with tinned copper.

Applications: Electric welding services and electric furnaces.

Trenzas en cobre rojo para apantallar Red copper braids to screen Tresses de cuivre rouge pour blindage Abschirmgeflecht in Rotkupfer

Referencia Reference Référence Bestell-Nr.	Ø interior Internal Ø Ø intérieur Innerer Ø	N° hilos No. wires Nore de fils Anzahl Drähte	Nº husos No. braids Nore de fuseaux Anzahl Adern		Ø hilo Ø wire Ø fil Ø Draht	
TA-2	2	3	24	72	0,1	
TA-4	4	4	24	96	0,15	
TA-8	8	7	32	224	0,15	
TA-12	12	9	32	288	0,15	
TA-16	16	8	32	256	0,20	
TA-20	20	10	32	320	0,20	
TA-25	25	11	32	352	0,20	
TA-30	30	10	32	320	0,30	
TA-40	40	12	32	384	0,30	
TA-50	50	9	32	288	0,50	
TA-60	60	7	48	336	0,50	

To special order, we can manufacture other diameters.

Presentation: Rolls or coils according to DIN 46399, depending on the diameter.

Dimensions: These features are given only as a guidance and may be subject to modification in any moment

Applications: Antiparasite, earthing and shield.

Trenzas en cobre estañado para apantallar Tinned copper braids to screen Tresses de cuivre étamé pour blindage Abschirmgeflecht in verzinntem Kupfer


Referencia Reference Référence Bestell-Nr.	Ø interior Internal Ø Ø intérieur Innerer Ø	N° hilos No. wires Nbre de fils Anzahl Drähte	N° husos No. braids Nbre de fuseaux Anzahl Adern	Total Nº hilos Total No. wires Nbre Total de fils Gesamtanzahl Drähte	Ø hilo Ø wire Ø fil Ø Draht
TA-2	2	3	24	72	0,1
TA-4	4	4	24	96	0,15
TA-8	8	7	32	224	0,15
TA-12	12	9	32	288	0,15
TA-16	16	8	32	256	0,20
TA-20	20	10	32	320	0,20
TA-25	25	11	32	352	0,20
TA-30	30	10	32	320	0,30
TA-40	40	12	32	384	0,30
TA-50	50	9	32	288	0,50
TA-60	60	7	48	336	0,50

To special order, we can manufacture other diameters.

Presentation: Rolls or coils according to DIN 46399, depending on the diameter.

Dimensions: These features are given onLy as a guidance and may be subject to modification in any moment.

Applications: Antiparasite, earthing and armouring.

Round braids of bare copper wire insulated with clear pvc

They are manufactured according to standard UNE 20.707. These features are given only as a guidance and may be subject to modification. They can be made of tinned copper and other sections to special order.

Applications: Earthing device and in short-circuit for high-tension.

Section mm ² Section mm ² Section mm ² Querschnitt mm ²	N° hilos Number wire Nombre de fils Anzahl Drähte	Ø hilos mm Ø wires mm Ø des fils mm Ø Drähte in mm	Ø sobre cobre Ø with copper Ø sur cuivre nu Ø nur Kupfer	Ø sobre aislamiento Ø with isolation Ø sur isolant mm Ø mit Isolierung	
16	504	0,20	6	8	
25	792	0,20	7	9	
35	720	0,25	9	11,8	
50	1.008	0,25	10	12,8	
70	1.416	0,25	12	15,6	
95	1.932	0,25	14	18	
120	2.448	0,25	16	21	

Trencillas extraflexibles con hilos de 0,10 mm de diámetro Extraflexible small braids with wires of 0,10 mm of diameter Tresses extra-souples avec fil de 0,10 mm de diamètre Hochflexible Geflechte aus Drähten von 0,10 mm Durchmesser

Referencia Reference Référence Bestell-Nr.	Copper type Type de cuivre	Sect Sect	ión m tion mr tion mr chnitt r	n ² 1 ²	Dimensiones Dimensions Dimensions Abmessungen	Tota Nbr	total hilos I no. of wires e total de fils mtanzahl Drähte
F-7 AC	rojo/red/rouge/rot		0,5	2 mm	ancho/width/large	/breit	64
F-7 AE	estañado/tinned/étamé/verzi	nnt	0,5	2 mm	ancho/width/large	/breit	64
F-7 C	rojo/red/rouge/rot		1	3 mm	ancho/width/large	/breit	120
F-7 E	estañado/tinned/étamé/verzi	nnt	1	3mm	ancho/width/large	/breit	120
F-8 C	rojo/red/rouge/rot		2	4 mm	ancho/width/large	/breit	240
F-8 E	estañado/tinned/étamé/verzi	nnt	2	4mm	ancho/width/large	/breit	240

Trencillas extraflexibles con hilos de 0,05 mm de diámetro Extraflexible small braids with wires of 0,05 mm of diameter Tresses extra-souples avec fil de 0,05 mm de diamètre Hochflexible Geflechte aus Drähten von 0,05 mm Durchmesser

Referencia Reference Référence Bestell-Nr.	Tipo cobre Copper type Type de cuivre Kupferart	Section mm ² Section mm ² Section mm ² Querschnitt mm ²	N° total hilos Total no. of wires Nbre total de fils Gesamtanzahl Drähte
F-9 B	rojo/red/rouge/rot	0,13	64
F-9 D	rojo/red/rouge/rot	0,20	96

To special order, we can manufacture other sections according to standard DIN 46444.

Presentation: 100, 200 or 500 meters coiLs according to DIN 46399, depending on the section. **Approximate weights:** It should be 10 grams for each millimeter² the meter. For example: 0,12 mm² = 1,2 grams the meter.

Dimensions: these features are given only as a guidance and may be subject to modification in any moment

Applications: High-speaker moving coils, screening of cores of small diameter, earthing connections, screen or TV's tubes earthing.

braid connections or red copper conductors also of tinned

specifications: These connections are made with braid or conductor of specifications identical to those given in the corresponding paragraphs.

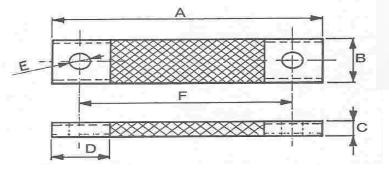
To special order, we can manufacture any type of lenght, section terminals, connection, etc.

Connections

- Specially flexible connections
- Point resístanse
- Koper sheets
- Nomalized earthing connections

Applications: Electrical connections between bars and transformers.

Electrical connections between bars and contactors, circuit breakers, etc.


- Manufacture of electrical quipment.
- Motor earthing connections, etc.

In view of their degree of flexibility they are very suitable for the transmission of vibrations and expansion strains in electrical connections.

Allow errors made in rigidly assembled appliances to be corrected.

Enclose following details with your order:

Sección Section	A	B	C	D	E	F

Note: State whether braid or conductor connections is wanted, as well as copper or tinned copper.

Our Technical Department will study any need you may have.

Terminals

Criterions to consider for the terminals of the connection.

The connection serves to establish a union between conductors. Before doing it, you must know the following points:

Preparation of contact surfaces: elimination of the oxide screen or any other foreign coat that is not a good conductor and prevents its reconstitution. This can be done mechanically with abrasives. This film is generally very fine and fragile. Avoidance of its formation due to oxidation, by using a neutral and impermeable product -such as grease- which does not damage the contact, or by depositing a coat of another metal in the oxide's place which is less sensitive to atmospherical agents.

Pressing effort: this deals with bettering the contact, by multiplying the number of contact points and increasing its surface effectiveness. It is necessary to exercise a sufficient pressing effort. As there is an ideal pressure effort, it would be better to tighten all contacts with a dynamometric key, to allow exact measurement of the pressing effort.

Surface contact: it is important to have sufficient surface contact, because contact temperature is not enough criterion to determine its quality. This depends on the intensity by which it crosses, its geometric dimensions and the tension fall due to contact. The contact temperature could be superior to the conductor's without meaning that the contact is electrically bad, that is to say without having an abnormal fall in tension.

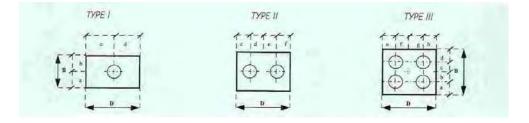
It is indispensable that the fall in tension and the joining temperature vary only slightly whatever be the functioning time.

A correctly effected contact is conserved indefinitely, must conserve the initial conditions of each tension and relative temperature, even after many years of function.

If joining is formed by metals of different dilatation coefficients -such as copper bars and steel pressing screwswith the current of electricity different dilatations can be developed in the contact elements, the screw dilates less than the copper bar. Whilst the screw or the bar do not exceed their elastic limit the initial pressure of the cold contact stays constant after each stop. The elastic limit of the elements should never be exceeded, not at the beginning nor during the service, or the pressing effort will be modified and so destroy the joining.

All pressure modification changes the tension fall and the temperature.

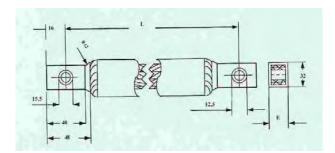
Any intention to repress proves that an element of the group has broken under the current's effect.


The carrying out of any contact, if you do not dispose of a calculation element, demands the following fundamental regulations:

1- Brushing with a metalically toothed brush coated with neutral grease. The brush can be substituted by any other abrasive.

2- To make the pressing effort with screws of greatest possible diameter, using as many as possible.

3- Screw tightly with a key of normal dimensions, preferibly using a tubular key. If not, a flat one.


Some examples of terminals:

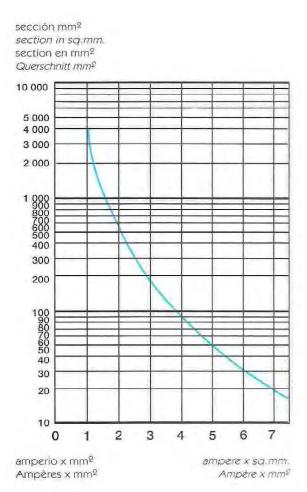
Notes:

- Indicate in each case, the diameter of the drills.
- Other variants can be manufactured, regarding the number of drills, position according to axles, etc.
- Indicate whether the terminals should be tinned, silver plated, etc.
- Indicate if the terminal should be reamed in the contact zone with the conductor.

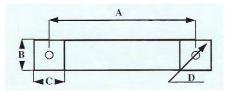
Execution: In all our connections, terminals made of electrolytic copper tubes are used, high-pressure pressed.

To special order, they can be tin-covered or silverplated.

Terminales <i>Terminals</i> Plages de raccordement Anschluss-Flansche						
Sección/Section Section/Querschnitt E L	Ø h 300 mm 17 Ref./Bestell-Nr.	ilos/wires/fils/der Drähte 400 mm 19 Ref./Bestell-Nr.	0,25 500 mm ² 23 Ref./Bestell-Nr.			
200	NF-25 300 200	NF-25 400 200	NF-25 500 200			
225	NF-25 300 225	NF-25 400 225	NF-25 500 225			
250	NF-25 300 250	NF-25 400 250	NF-25 500 250			
275	NF-25 300 275	NF-25 400 275	NF-25 500 275			
300	NF-25 300 300	NF-25 400 300	NF-25 500 300			
325	NF-25 300 325	NF-25 400 325	NF-25 500 325			
350	NF-25 300 350	NF-25 400 350	NF-25 500 350			
375	NF-25 300 375	NF-25 400 375	NF-25 500 375			
400	NF-25 300 400	NF-25 400 400	NF-25 500 400			
425	NF-25 300 425	NF-25 400 425	NF-25 500 425			
450	NF-25 300 450	NF-25 400 450	NF-25 500 450			
475	NF-25 300 475	NF-25 400 475	NF-25 500 475			
500	NF-25 300 500	NF-25 400 500	NF-25 500 500			
525	NF-25 300 525	NF-25 400 525	NF-25 500 525			
550	NF-25 300 550	NF-25 400 550	NF-25 500 550			
575	NF-25 300 575	NF-25 400 575	NF-25 500 575			
600	NF-25 300 600	NF-25 400 600	NF-25 500 600			


Tolerance: L = +5, D = +-2 Y E = +-1, the cuotes are given in millimeters. To special order, they can be manufactured according to standard DIN 44. 760.

flexible connections in copper sheet


table for determining the current density according to the cross- section in sq.mm.

Sección mm ² Section in sq.mm. Section mm ² Querschnitt mm ²	Intensidad admisible Admissible current Intensité admissible zulässige Stromstärke		
16,5	122		
26,5	157		
37	202		
50	250		
73	310		
90	349		
100	372		
125	431		
150	480		
200	599		
250	673		
300	780		
400	950		
500	1.100		
625	1.300		
800	1.500		
1.000	1.800		
1.500	2.200		
2.000	2.400		
3.000	3.000		

Regulated earthing connections

Sección Section Section Querschnitt	A	В	с	D

Cuotes are given in mm

Con trenza de cobre estañado y terminales de tubo de cobre estañado With tinned copperbraid and terminals with tinned copper tube Tresse en cuivre étamé et plages de raccordement en cuivre étamé Mit verzinntem Kupfergeflecht und Anschluss-Flanschen aus verzinntem Kupferrohr

Referencia Reference Référence Bestell-Nr.	Section mm ² Section mm ² Section mm ² Querschnitt mm ²	A	В	c	D	Intensidad (Amp.) Intensity (Amperes) Intensité (Amp.) Stromstärke (Amp.)
FT-17 16x150	16	250	17	17	6	120
FT-17 16x250	16	250	17	17	6	120
FT-17 25x150	25	150	26	26	8	150
FT-17 25x250	25	250	26	26	8	150
FT-17 25x300	25	300	26	26	8	150
FT-17 40x250	40	250	26	30	10	215
FT-17 40x300	40	300	26	30	10	215
FT-17 50x250	50	250	33	33	10	250
FT-17 50x300	50	300	33	33	10	250

Con trenza de cobre estañado y terminales estañados With tinned copperbraid and tinned terminals Tresse en cuivre étamé et plages de raccordement massivées à l'étain Mit verzinntem Kupfergeflecht und verzinnten Anschluss-Flanschen

0

F-17 16x150	16	150	15	6	120	
F-17 16x250	16	250	15	6	120	
F-17 25x150	25	150	25	8	150	
F-17 25x250	25	250	25	8	150	
F-17 25x300	25	300	25	8	150	
F-17 40x250	40	250	25	10	215	
F-17 40x300	40	300	25	10	215	
F-17 50x250	50	250	30	10	250	
F-17 50x300	50	300	33	10	250	

Presentation: Package of 10 units. If less are required, contact our nearest distributor and request the oneconnection blister.

Water-cooled braided cables for welding service

specifications: These cables are formed by a copper spring core coated with a copper braid using 0.5, 0.20 and 0.25 mm diameter wires, allowing for some very low bending radii and consequently great ease of handling. Nevertheless, the main feature is the elimination of heat caused by the high current flowing when welding, by the water flowing through inside of the cable.

This cable is coated on the outside with a neoprene tube.

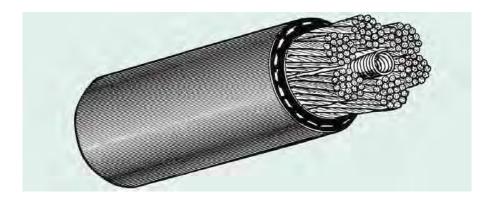
Terminals suiting the needs of each application are welded at the ends of the required length of cable.

Applications: The main applications of the water-cooled cables are: Electrochemistry; welding; induction furnaces; electrothermics; feeding of electromagnets; etc.

Referencia	Sección mm ²	Alma en mm.	Hilo muelle Ø en mm.	Composición trenzado
Reference Référence Bestell-Nr.	Section mm ² Section mm ² Querschnitt mm ²	Core in mm. Âme Ø mm Seele in mm	Spring wire in mm. Ressort Ø mm Federdraht	Braided composition Composition tresse Zusammensetzung Kupfergeflecht
FRA - 40	40	4,5	1	165 — 0,15 x 12
FRA - 50	50	4,5	1	71 — 0,15 x 3 x 12
FRA - 80	80	7,5	1,5	62 — 0,20 x 3 x 12
FRA - 100	100	7,5	1,5	78 — 0,20 x 3 x 12
FRA - 150	150	7,5	1,5	80 — 0,25 x 3 x 12
FRA - 200	200	7,5	1,5	54 — 0,25 x 3 x 19
				54 — 0,25 x 3 x 12
FRA - 250	250	7,5	1,5	68 — 0,25 x 3 x 12
				68 — 0,25 x 3 x 12
FRA - 300	300	7,5	1,5	82 — 0,25 x 3 x 12
				82 — 0,25 x 3 x 12

Datos técnicos / Specifications / Spécifications / Technische Daten

To special order, we can study any other section comprised between the standard ones. The cable lengths and the terminals are made to special order.



Water-cooled helical cables

These cables are used for the same working conditions of the braided cables, but for sections above 400 mm2. The same comments are valid for terminals, lengths, etc., as given for the braided cables.

Referencia	Sección	Ø Alma en mm.	Hilo muelle Ø en mm.	Cable en mm.	Composi	ción
Reference	Section mm	Ø Core in mm.	Spring wire Ø in mm.	Cable in mm.	Compos	ition
Référence Bestell-Nr.	Section mm ² Querschnitt mm	Âme Ø mm Ø Seele in mm	Ressort Ø mm Federdraht Ø in mm	Câble Ø mm Kabel in mm	Compo Zusammens	
					N°. hilo/Toron No. of wires/rope Nbre fils/toron Anzahl Drähte/Ader	N°. Torones No. of rope: Nore torons Anzahl Ader
FHA - 400	400	11	1,5	39	1326	6
FHA - 550	550	11	1,5	42	1836	6
FHA - 700	700	11	1,5	50	704	7 + 13
FHA - 850	850	11	1,5	53	857	7 + 13

To special order, we can study any other section comprissed between the standard ones.

Compensation or extension cables

CÓDIGO DE COLORES COLOUR CODE CODE DE COULEURS FARBENCODE

Letra	Material +	DIN IEC 584	DIN 43710/ 43713/43714	ANSI MC 96.1	BS 4937	NF C 42-324
	+ Ni Cr - Ni	-25" ÷ +200°C	NiCr-Ni 0" +: + 200°C	0° + + + + + + + + + + + + + + + + + + +	0° + +900°C	-25" + +200"C
K	+ Ni Gr - Ni	0" + +150"C	Sonto-Son WX 0* + +200*C			0° + +150°C
	+ Ni Cr - Ni	0° ± +100°C			0" + +100°C	VC

When the conductors and the thermocouple's wires are of the same nature, it is called extension cable, and when the conductors are of a different nature to that of the thermocouple's wires, a compensation cable.

The pyrometer is based on two effects:

PELTIER effect: if we establish an electrical contact between two wires of dissimilar metals, an electromotive force (EMF) is created at their junction point.

THOMSON effect: if there is a different temperature at each of the two ends of a conductor wire of uniform composition, an EMF is created.

The algebraic sum of the EMF of the above two effects creates a resultant EMF, called the SEEBECK effect, which is what it is measured.

The ideal thing would be for the cable concerned to be of the same material as the thermocouple (extension cable) but since the thermocouple is usually made of costly materials, another law of thermoelectricity is used to allow incorporation of a third metal into the circuit without causing the EMF to vary, as long as such a metal maintains the same temperature throughout its length.

Other cables are used with the particularity of giving in the same temperature zone of use, the same temperature-EMF (compensation cables) as the thermocouple.

Compensation cables should have the following qualities:

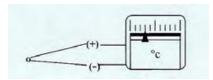
- Homogeneous conductors
- High isolation resistance between the conductors and between them and the screen, if there is one
- Best watertightness possible
- Protection that best responds to conditions of use such as temperature, chemical action, mechanic resistance, etc.
- Rapid response speed

Here below is a list of the mistakes that would cause a variation of tenths of grades and would inutilise the pyrometer:

- Substitution of the compensation cable for an ordinary copper one
- Use of a type of compensation cable destinated to a different couple
- Inversion of polarity
- It is necessary to know and maintain constant the temperature of the comparison point in order to determine the temperature of the measurement point.

When you order a compensation cable you must remember the following:

- Thermocouple class
- Maximum and minimum ambient temperature
- Working conditions (humidity, carbohydrates, etc.)
- Cable's working conditions (traction, abrasion, mobile equipment, etc.)
- The scale of temperature needs to be measured to know if they correspond to the EMFtemperature lineality.


TYPE K: Scale of temperatures from -17°C to + 1400°C

Advantages:

- Appropriate in oxidizins atmosphere.

Disadvantages:

- Specially vulnerable in reducins atmospheres, required protection if used.

Litz cables

Litz cables are used principally for: energy conversion, high frequency emission and reception, potency electronics, inductive proximity detector s, electronic tags, multiple telephonic transmission equipment, flexible junctions for relays, coils, transformers, motors, etc.

Litz cables can be made in different ways, according to the designer. Casa Masfarné, S.A. manufacture them round, with wires assembled in the same direction, with a cabling step of less than 60mm.

To special order, we can satisfy our client's needs by forming square or rectangular rope shapes for a better coiling volume.

In the manufacture of Litz cables we use products that allow direct welding, without the need of any mechanical procedure.

Before welding, the cable has to be submerged in a rust-removing agent and after in a bath of tin (60%) and lead (40%) at a temperature between 375°C and 400°C.

The immersion time will depend on the wire's number and its diameter.

Coil losses

These are due to the following:

- Conductor losses: JOULE effect
 - FOUCAUL T currents
- Losses due to capacity
- Losses due to the nucleus (hysteresis)

The first two appear in all the coils and the third in the ones that have an ironmagnetic nucleus. Here, we will analyze the first two to justify the use of the Litz cable.

Conductor losses

JOULE effect: we all know that electrical conductors heat by electricity, causing the conductor to increase its ohmic resistance, causing a decrease of amperes in the same section.

Apparently, we could increase the diameter of the section to diminish the effect, but this would increase the losses due to Foucault currents. Once we have defined the section, its modification is not a solution.

We can do as follows: once determined the ideal conductor section, to avoid the pellicular effect, we can achieve the calculated section with the reunion of isolated enameled cables; this way we will achieve a section which will be maintained during almost all the working cycle of the coil.

The thinner the wires, the greater the use, due to the pellicular effect. However, this solution would be expensive. We then recommend the ideal calculation for the section, which should be studied individually by the technician.

To calculate the pellicular current, we should use the following formula, which will give the current's depth

$$e = 503 \frac{\rho}{\sqrt{\mu \cdot f}}$$

e = thickness to calculate

p = conductor resistivity

u = conductor's material permeability

f = current's frequency

for a copper conductor, of interest in our case, the formula would be as follows:

$$e = \frac{66}{\sqrt{f}}$$

the value would be given in mm.

The conductor's resistance in alternating current would be given by

$$R = \frac{198 \cdot 10^{5} \sqrt{\rho \cdot f}}{1} \Omega / m$$

I beins equal to the perimeter of the conductor's section in mm.

For Koper, the formula would be:

$$R = \frac{260.10^{-6}\sqrt{f}}{l} \Omega/m$$

FOUCAULT currents: when an ironmagnetic material is introduced inside an alternating masnetic field, in addition to magnetization, an induced tension is created; this produces n induced current that depends on the material's resistance.

This current induced in the material is consumed in the form of heat (JOULE effect) and is given by the following formula:

$$P = \frac{4 \cdot K}{\rho} B \cdot c^2 \cdot f^2 \cdot V^2$$

where P is the dissipated potency by Foucault currents; K is the constant; p is the copper's resistivity; B is the maximum induction that passes through the material; c is the tickness of the ironmasnetic material; f is the frequency and V is the volume of ironmagnetic material.

Losses due to capacity

Two conductors with different potentials store electric enersy at the same time, the wires used to form the coils have this particularity, thus, in a coil, we can talk of a sum of capacities distributed between the different spirals.

The coils studied are exposed to alternating high frequency tension, close to resonance frequency, which will sive us an elevated impedance, beins as they are parallel with the ohmic resistance of the coil and the self-induction coefficient of the coil.

These concepts conclude that the capacity of the coil itself in Pf is 0.55 times the coil's diameter in cm.

We can modify the coil's capacity, by: desisnins its dimensions, seekins the best windins, distributins the currents in the coil and isolation of the conductors.

The capacity between two conductor wires is:

$$C = \frac{0,0241.\,\xi}{lg\,D/d}\mu F/Km$$

Where \leq , is the dielectric constant of the isolation; D is the diameter of the conductor's isolated wire and d is the diameter of the conductor's wire without isolation.

Once isolation has been decided -which has to have a very low dielectric constant and must respond to our objectives- we have to analyze the relation D/d. When lower, the sreater the capacity; the technician has to decide on the best solution dependins on the maximum current that has to pass through each wire and the tension to be supported by the wires.

An adequate cablins between the wires that form the Litz cable will sive us the uniformity necessary in the capacitive distribution throuShout the en tire cablins in the Litz cable, so increasins the coi/'s quality.

Placins a spiral of natural silk, poliester or any other fiber that responds to our requirements, as a support of the cablins of enameled wires, allows no in crease of D, and the spiral's step of the fiber has to be the ideal so that the Litz cable is not very rigid, and permits sood coilinS, without increasins the apparent inductance created between the spirals.

It is paradoxical that in the cables the relation lgd/d is a multiplier in inductance, for which it has to be as small as possible, and is a dividend in the capacity for which it has to be as big as possible.

It is the technician that calculates the coil that has to decide which are the parameters to consider in the study of the circuit: ohmic resistance, total induction and total capacity. The final result has to be a coil ready for use in the circuit, with the greater performance, less volume and good quality together with a lower loss resistance.

As a result, with the Litz cable, we will obtain the following:

- decrease of losses due to the Joule effect
- decrease of losses due to the Foucault currents
- smaller magnetic nucleus
- capacity in smaller coils
- greater quality
- to work with wires of easy handling during coiling
- being as theyare attached.
- extra flexible cables that allow the coiling of nucleus

with a very small curving radius.

Manufacturing regulations

Masfarné manufacture according to the DIN 46447 regulation and designate the cables according to: number of wires for the wire's diameter and in continuation the type of coating in the same amount as the cable's layers.

The enameled copper wires must be tinned directly. The exterior diameter and others properties of the enameled copper wire will be up to the manufacturer if the client does not indicate specifically.

The exterior diameters without wire coating serve as a base for the calculation of the exterior diameters of the coated cables: these are not valid for reception control.

High frequency cabling cables (Litz cables) are defined by:

- thickness of each wire
- total number of wires and its reunion in groups
- cabling's step length
- coating

In the DIN 46447, the types of the calculated cables' cabling are indicated for each of the 4 concepts.

Any question about the preestablished total section of a conductor (effective section) are answered as follows:

Preestablished effective section: 0.70 mm'2,

Individual wire diameter: 0.10 mm; its section is 0.007854 mm2.

Number of wires that correspond: 0.70/0.007854 = 89.13 theoric wires. 90 wires would be taken. For which the cable studied will give us the following composition: 90 x 0. 10 mm.

Do not hesitate to call us for any question; our technical department will advise you and resolve any doubt you may have, for choosing the wire required.

Tinned copper wires for electronic components

Conditioning: in coils according to standard 46399 of 4 and 8 kilograms.

Hilos estañados por immersión, especialmente diseñados para utilizar en electrónica Immerged tinned wires, specially designed for electronic use Fils étamés par immersion, spécialement étudié pour des utilisations électroniques Tauchverzinnte Drähte, speziell für die Anwendung in der Elektronik entwickelt

Diámetro hilo mm Diameter of wire in mm Diamètre du fil mm Drahtdurchmesser in mm	
0,20	
0,25	
0,30	
0,40	
0,50	
0,60	
0,70	
0,80	
1	
1,20	
1,50	

"FLEX·LINE" anti-inductive conductor

The "FLEX-LINE" is an extra-flexible electric anti-inductive conductor developed for high-current installations.

Consultative tables

Características del cobre Copper specifications Caractéristiques du cuivre Eigenschaften des Kupfers	
Símbolo químico/ <i>Chemical symbol</i> Symbole chimique/ <i>Chemisches Zeichen</i>	Cu
Número atómico/ <i>Atomic number</i> Numéro atomique/ <i>Anzahl Atom</i> e	29
Peso atómico/Atomic weight Poids atomique/Atomgewicht	63,546
Estados de oxidación más comunes/ <i>oxidation states more usual</i> État d'oxydation usuel/ <i>Häufigste Oxydations-Zustände</i>	Cu+, Cu ²⁺
Punto de fusión/ <i>Fusion point</i> Point de fusion/ <i>Schmelzpunkt</i>	1083 °C
Punto de ebullición/ <i>Boiling point</i> Point d'ébullition/ <i>Siedepunkt</i>	2567 °C
Densidad del cobre industrial a 20 °C Density of industrial copper at 20 °C Densité du cuivre industriel à 20°C Dichtigkeit des Industriekupfers bei 20 °C	8,9 g/cm ³
Calor especifico entre 1 y 100 °C/Specific heat between 1 and 100°C Chaleur spécifique entre 1 et 100°C/Spezifische Wärme zwischen 1 und 100	0,092 cal/°C.g ℃
Calor específico a 2000 °K/Specific heat at 2000 °K Chaleur spécifique à 2.000°K/Spezifische Wärme bel 2000 °K	0,118 cal/°C.g
Conductibilidad térmica/ <i>Thermic conductibility</i> Conductibilité thermique/ <i>Wärmeleitfähigkeit</i>	0,93 (cal/cm2/cm) °C
Termo conductividad/ <i>Thermic conductivity</i> Conductivité thermique/ <i>Thermoleitwert</i>	3,98 w/cm.°C
Coeficiente de dilatación lineal a 25 °C Coefficient of linear expansion at 25 °C Coefficient de dilatation linéaire à 25°C Linearer Dilatationskoeffizient bei 25 °C	16,6 x 10 ⁻⁶
Coeficiente de aumento de resistencia por grado a 20 °C Increasing coefficient of resistance per grade at 20 °C Coefficient d'augmentation de la résistance par degré à 20°C Koeffizient der Erhöhung des Widerstands pro Grad bei 20 °C	0,00393
Conductividad en estado de recocido a 20 °C Conductivity in soft state at 20 °C Résistivité à l'état recuit à 20°C Leitfähigkeit in geglühtem Zustand bei 20 °C	58 m/Ohm. mm ⁹
Resistividad en estado de recocido a 20 °C Resistivity in soft state at 20 °C Conductivité à l'état recuit à 20°C Widerstand in geglühtem Zustand bei 20 °C	0,071241 Ohm. mm ² /m
Resistividad másica/ <i>Mass resistivity</i> Résistivité de masse/ <i>Masse-Widerstand</i>	0,15328 Ohm. g/m ²
IACS recocido a 20 °C/IACS soft at 20 °C IACS recuit à 20°C/IACS geglüht bei 20 °C	100%
IACS alambre duro/ IACS hard wire (according to diameters) IACS fil dur (suivant diamètres)/IACS Hartdraht (je nach Durchme	96,5 a 98% (según diámetros) sser)
Resistencia a la tracción/Resistance to traction Résistance à la traction/Zugfestigkeit	200 a 450 N/mm ² (según estado de tratamiento) (according to treatment state) (suivant l'état de traitement) (je nach Bearbeitungszustand)

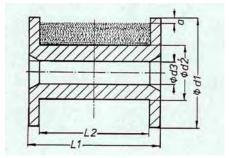
masfarnē 🗩

Factor de corrección de la resistencia obtenida a t °C, para referirla a la temperatura normalizada, de 20 °C Correcting factor of the resistance at t °C, to refer to regulated temperature, of 20 °C Correction du facteur de la résistance à t°C, en référence à la température normalisée de 20°C Korrektur-Faktor für den Widerstand bei t °C, bezogen auf die Standard-Temperatur von 20 °C

Temperatura del conductor durante la medición t °C	Factor de corrección de los conductores de cobre ⁽¹⁾	Temperatura del conductor durante la medición t °C	Factor de corrección de los conductores de cobre ⁽¹⁾
Conductor's temp. during measuring	Correcting factor of copper conductors ⁽¹⁾	Conductor's temp. during measuring	Correcting factor copper conductors ⁽¹⁾
Température de conduc- teur durant la mesure t°C Temperatur des Leiters bei der Messung t °C	Facteur de correction des conducteurs de cuivre ⁽¹⁾ Korrektur-Faktor der Kupfer-Leiter ⁽¹⁾	Température du conduc- teur durant la mesure t°C Temperatur des Leiters bei der Messung t °C	Facteur de correction des conducteurs de cuivre ⁽¹⁾ Korrektur-Faktor der Kupfer-Leiter ⁽¹⁾
5	1,06263	18	1,00792
5,5	1,06042	18,5	1,00593
6	1,05821	19	1,00394
6,5	1,05602	19,5	1,00197
7	1,05383	20	1,00000
7,5	1,05165	20,5	0,99804
8	1,04948	21	0,99609
8,5	1,04733	21,5	0,99414
9	1,04517	22	0,99220
9,5	1,04303	22,5	0,99027
10	1,04090	23	0,98835
10,5	1,03878	23,5	0,98643
11	1,03666	24	0,98453
11,5	1,03455	24,5	0,98262
12	1,03245	25	0,98073
12,5	1,03036	25,5	0,97885
13	1,02828	26	0,97697
13,5	1,02621	26,5	0,97510
14	1,02414	27	0,97323
14,5	1,02209	27,5	0,97137
15	1,02004	28	0,96952
15,5	1,01800	28,5	0,96768
16	1,01597	29	0,96584
16,5	1,01394	29,5	0,96402
17	1,01193	30	0,96219
17,5	1,00992		

(1) Correcting factors based in the coefficient 0.00393, per grade °C at 20 °C, of resistance's variation with the temperature, specified in standard UNE 20003.

	Intensité	ssible load 5 admissible Ampère-Zahlen	
Sección nominal Nominal section Section nominale Nominalquerschnitt	Amperios admisibles aproximadamente Permissible load approx. Intensité admissible approx. Amp. Zulässige Ampère (ungefähr)	Sección nominal Nominal section Section nominale Nominalquerschnitt	Amperios admisibles aproximadamente Permissible load approx. Intensité admissible approx. Amp. Zulässige Ampère (ungefähr)
0,1	5	35	195
0,14	6	50	250
0,2	7	70	300
0,25	9	95	360
0,35	10	120	420
0,5	12,5	150	480
0,75	15	185	570
1	18	240	670
1,5	21	300	780
2,5	30	400	950
4	40	500	1100
5,25	44	625	1300
6	55	800	1500
8	70	1000	1800
10	85	1500	2200
16	120	2000	2400
	150	3000	3000


Amnerios admisibles

Calculated at a room temperature of 35°C and a maximum permissible temperature of the conductor of 70°C.

Tabla de carretes Table of coils Tableau des bobines Spulen-Tabelle

Tipo de bobina Type of coil Type de bobine Spulen-Type	d 1 mm d 1 mm d ₁ mm d 1 mm	d 2 mm d 2 mm d ₂ mm d 2 mm	d 3 mm d 3 mm d ₃ mm d 3 mm	L 1 mm L 1 mm L ₁ mm L 1 mm	L 2 mm L 2 mm L ₂ mm L 2 mm	Tara kgs Tare kgs Poids Kg Tara kg	Volumen bobinado cm ³ Coiling volume cm ³ Volume du bobinage cm ³ Volumen Wicklung cm ³
125	125	80	16	125	100	0,20	450
160	160	100	22	160	128	0,35	970
200	200	125	22	200	160	0,60	2110
250	250	160	22	200	160	1,05	3430
355	355	225	36	200	160	3,20	7380
500	500	250	127	300	260	15,8	15890

Calculation of a **full** coil's content: multiply the volume per 8,9 gr/cm³, which is the copper's density. Example:

Calculation 6, 5 Example: Coil 160 Volume = 970 cm³ Weight = 970 cm³ x 8,9 $\frac{\text{gr}}{\text{cm}^3}$ x $\frac{1 \text{ kg}}{1000 \text{ gr}}$ = 8,63 kg

Cables Litz de alta frecuencia S/DIN 46447 High frequency Litz cables S/DIN 46447 Câbles de Litz de haute fréquence s/DIN 46.447 Hochfrequenz-Litzenleiter nach DIN 46477

Estructura Hilos cobre esmaitados Structure of enam- eled copper wires		Form. de haces	Diám. e recubri			ext. con recu (1 capa)		de seda (2 capas)	Secc. total	Resistencia en cc a 20 °C en Ohm./km.			
		Size of rope	Exter without	ior Ø t coating		xterior Ø wi (1 layer)		ting (2 layers)	Total section	Resistance in c.c. at 20°C in Ohm/Km		c.c. n/Km	
	Structur	re de fil de émaillé	Taille du toron	Ø ext. isc	sans blant	Ø Unique (*	ext. avec is 1 couche)	olant de s Double (oie (2couches)	Section totale	Rés 20	istance C °C en W/I	.C. Km
		lackisolierte erdrähte	Adem	Aussendu ohne Umr		Aussendu einfach (1	rchmesser n Schicht)	nit Seidenur doppelt (2	mmantelung Schichten	Querschnitt		erstand ir ° C in Oh	
	Nº	Ø NOM. mm		min. mm	máx. mm	min. mm	máx. mm	min. mm	máx. mm	mm ²	NOM.	min.	máx.
	10		1x10	0,153	0,183	0.185	0,218	0,216	0,253	0,01257	1420	1240	1610
	12		1x12	0,175	0,208	0.207	0,243	0,238	0,278	0,01508	1190	1030	1340
	15		1x15	0,191	0,228	0.227	0,268	0,254	0,298	0,01885	950	830	1070
	20		1x20	0,218	0,260	0,254	0,300	0,281	0,330	0,02513	710	620	800
	25		1x25	0,252	0,300	0,288	0,340	0,315	0,370	0,03142	570	500	640
	30		1x30	0,270	0,321	0,306	0,361	0,333	0,391	0,03770	475	413	537
	35		1x35	0,294	0,350	0,330	0,390	0,357	0,420	0,04398	407	354	460
	45		1x45	0,336	0,400	0,372	0,440	0,399	0,470	0,05655	316	275	358
	60	0,04	3x20	0,399	0,475	0,435	0,515	0,462	0,545	0,07540	237	207	268
	75		3x25	0,461	0,550	0,497	0,590	0,533	0,630	0,09425	190	165	215
	90		3x30	0,495	0,590	0,531	0,630	0,567	0,670	0,1131	158	138	179
	105		3x35	0,538	0,640	0,574	0,680	0,610	0,720	0,1319	136	118	153
	120		3x40	0,580	0,690	0,616	0,730	0,652	0,770	0,1508	119	103	134
	135		3x45	0,617	0,735	0,653	0,775	0,689	0,815	0,1696	105	92	118
	180		3x3x20	0,756	0,900	0,801	0,950	0,846	1,000	0,2262	79	69	89
	225		3x3x25	0,869	1,035	0,914	1,085	0,959	1,135	0,2827	63	55	71
	270		3x3x30	0,932	1,110	0,977	1,160	0,922	1,210	0,3393	52,7	45,9	59,6
	6		1x6	0,156	0,186	0,188	0,221	0,219	0,256	0,01178	1520	1370	1670
	8		1x8	0,172	0,205	0,204	0,240	0,235	0,275	0,01571	1150	1030	1250
	10		1x10	0,190	0,226	0,226	0,266	0,253	0,296	0,01964	910	820	1000
	12		1x12	0,216	0,258	0,252	0,298	0,279	0,328	0,02356	760	680	840
	15		1x15	0,237	0,282	0,273	0,322	0,300	0,352	0,02945	610	550	670
	20		1x20	0,270	0,322	0,306	0,362	0,333	0,392	0,03927	456	410	501
	25		1x25	0,312	0,372	0,348	0,412	0,375	0,442	0,04909	365	328	401
	30		1x30	0,334	0,398	0,370	0,438	0,397	0,468	0,05891	304	273	334
	35		1x35	0,364	0,434	0,400	0,478	0,427	0,504	0,06872	260	234	286
	45	0,05	1x45	0,416	0,496	0,452	0,536	0,479	0,566	0,08836	203	182	223
	60		3x20	0,494	0,588	0,530	0,628	0,566	0,668	0,1178	152	137	167
	75		3x25	0,572	0,682	0,608	0,722	0,644	0,762	0,1473	122	109	134
	90		3x30	0,613	0,732	0,649	0,772	0,685	0,812	0,1767	101	91	111
	105		3x35	0,665	0,794	0,701	0,834	0,737	0,874	0,2062	87	78	95
	120		3x40	0,718	0,856	0,763	0,906	0,808	0,956	0,2356	76	68	84
	135		3x45	0,765	0,911	0,810	0,961	0,855	1,011	0,2651	68	61	74
	180		3x3x20	0,936	1,116	0,981	1,166	1,026	1,216	0,3534	50,6	45,6	57,6
	225		3x3x25	1,076	1,283	1,121	1,333	1,166	1,373	0,4418	40,5	36,5	44,0
	270		3x3x30	1,154	1,376	1,199	1,426	1,244	1,476	0,5301	33,8	30,4	37,

	tura Hilos smaltados	Form. de haces	Diám. e recubri			ext. con rec (1 capa)		de seda (2 capas)	Secc. total		stencia el C en Ohn	
	e of enam- pper wires	Size of rope	Exter	ior Ø t coating		xterior Ø wi (1 layer)		ing (2 layers)	Total section		tance in °C in Ohi	
	re de fil de émaillé	Taille du toron	Ø ext. isc	sans lant		ext. avec i 1 couche)		oie 2couches)	Section totale		istance (°C en W/	
	lackisolierte erdrähte	Adem	Aussendu ohne Umr		Aussendu einfach (1		nit Seidenun doppelt (2		Querschnitt total		erstand ii ° C in Oh	
Na	Ø NOM. mm		min. mm	máx. mm	min. mm	máx. mm	min. mm	máx. mm	mm ²	NOM.	min.	máx.
3		1x3	0,158	0,184	0,190	0,219	0,221	0,254	0,01155	1550	1460	1640
5		1x5	0,197	0,230	0,233	0,270	0,260	0,300	0,01924	930	870	990
6		1x6	0,219	0,255	0,255	0,295	0,282	0,325	0,02309	780	730	820
8		1x8	0,242	0,282	0,278	0,322	0,305	0,352	0,03079	580	550	620
10		1x10	0,266	0,310	0,302	0,350	0,329	0,380	0,03848	465	437	493
12		1x12	0,304	0,354	0,340	0,394	0,367	0,424	0,04618	387	364	411
15		1x15	0,332	0,387	0,368	0,427	0,395	0,457	0,05773	310	231	329
20		1x20	0,380	0,442	0,416	0,482	0,443	0,512	0,07697	232	219	246
25		1x25	0,438	0,510	0,474	0,550	0,501	0,580	0,09621	186	175	197
30		1x30	0,468	0,546	0,540	0,586	0,540	0,626	0,11558	155	146	164
35		1x35	0,511	0,595	0,547	0,635	0,582	0,675	0,1347	133	125	141
45	0,07	1x45	0,583	0,680	0,619	0,720	0,655	0,760	0,1732	103	97	110
60		3x20	0,693	0,807	0,729	0,874	0,765	0,887	0,23098	78	73	82
75		3x25	0,803	0,935	0,848	0,985	0,893	1,035	0,2886	62	58	66
90		3x30	0,861	1,005	0,906	1,055	0,951	1,105	0,3464	51,7	48,6	54,
105		3x35	0,935	1,090	0,980	1,140	1,025	1,190	0,4041	44,3	41,6	46,
120		3x40	1,007	1,173	1,052	1,223	1,097	1,263	0,4618	38,8	36,4	41,
135		3x45	1,075	1,250	1,120	1,300	1,165	1,350	0,5195	34,4	32,4	36,
180		3x3x20	1,315	1,530	1,360	1,580	1,405	1,630	0,6927	25,8	24,3	27,
225		3x3x25	1,510	1,760	1,555	1,810	1,600	1,860	1,8659	20,7	19,4	21,
270		3x3x30	1,620	1,890	1,665	1,940	1,710	1,990	1,039	17,2	16,2	18,
315		3x3x35	1,765	2,060	1,810	2,110	1,860	2,160	1,212	14,8	13,9	15,
405		3x3x45	2,015	2,350	2,060	2,400	2,105	2,450	1,559	11,5	10,8	12,
10		1x10	0,380	0,431	0,416	0,471	0,443	0,501	0,07854	228	214	249
12		1x12	0,433	0,491	0,469	0,531	0,496	0,561	0.09425	190	179	201
15		1x15	0,473	0,537	0,509	0,577	0,545	0,617	0,01178	152	143	16
20		1x20	0,541	0,613	0,577	0,653	0,613	0,693	0,15714	114	107	12:
25		1x25	0,624	0,708	0,660	0,748	0,696	0,788	0,19634	91	86	97
30		1x30	0,668	0,757	0,704	0,797	0,740	0,837	0,2356	76	71	81
35	0,10	1x35	0,728	0,826	0,764	0,866	0,800	0,906	0,2749	65	61	69
45	01250	1x45	0,832	0,944	0,877	0,994	0,922	1,044	0,3534	50,6	47,6	
60		3x20	0,988	1,120	1,033	1,170	1,078	1,220	0,4712	38,0	35,7	
75		3x25	1,145	1,300	1,190	1,350	1,235	1,400	0,5890	30,4	28,6	
90		3x30	1,228	1,395	1,273	1,445	1,318	1,495	0,7069	25,3		26,1
105		3x35	1,330	1,510	1,375	1,560	1,420	1,610	0,8247	23,5	20,4	
120		3x40	1,435	1,626								
135		3x40 3x45	1,435	1,735	1,480 1,575	1,678 1,785	1,523 1,620	1,718 1,835	0,9425 1,060	19,0 16,9	17,8 15,9	

Tabla de galgas *Table of gages* Tableau des freins de moyeux *Lehren-Tabelle*

Galga nº	Imperial Pulg.	standard mm	Alambres B Pulg.	irmingham mm	Chapas y fleje: Pulg.	s Birmingham mm
Gage no.	Imperial Inch	standard mm	Birmingham W	ire and Stubs mm	Birmingham She Inch	mm
Frein N°	Standard	Impérial mm	Fil de fer Bi Pouce	irmingham mm	Plaques & feuilla Pouce	mm
Lehre Nr.	Imperial Zoll	Standard mm	Birmingha Zoll	m Drähte mm	Birmingham Bleck Zoll	he und Bänder mm
0000	0,400	10,160	0,454	11,530	-	-
000	0,372	9,448	0,425	10,795	0,500	12,700
00	0,348	8,839	0,380	9,652	0,4452	11,308
0	0,324	8,229	0,340	8,636	0,3964	10,068
1	0,300	7,620	0,300	7,620	0,3532	8,971
2	0,276	7,010	0,284	7,213	0,3147	7,993
3	0,252	6,400	0,259	6,578	0,2804	7,122
	the second se			6,045	0,2500	6,350
4	0,232	5,892	0,238			5,651
5	0,212	5,384	0,220	5,588	0,2225	5,031
6	0,192	4,876	0,203	5,156	0,1981	
7	0,176	4,470	0,180	4,572	0,1764	4,480
8	0,160	4,064	0,165	4,190	0,1570	3,987
9	0,144	3,657	0,148	3,759	0,1398	3,550
10	0,128	3,251	0,134	3,403	0,1250	3,175
11	0,116	2,946	0,120	3,048	0,1113	2,827
12	0,104	2,640	0,109	2,768	0,0991	2,517
13	0,092	2,336	0,095	2,413	0,0882	2,240
14	0,080	2,032	0,083	2,108	0,0785	1,993
15	0,072	1,828	0,072	1,828	0,0699	1,775
16	0,064	1,625	0,065	1,651	0,0625	1,587
17	0,056	1,422	0,058	1,473	0,0556	1,412
18	0,048	1,219	0,049	1,244	0,0495	1,257
19	0,040	1,016	0,042	1,066	0,0440	1,117
20	0,036	0,914	0,035	0,889	0,0392	0,995
21	0,032	0,812	0,032	0,812	0,0349	0,886
22	0.028	0,711	0,028	0,711	0,03125	0,793
23	0,024	0,609	0,025	0,635	0,02782	0,706
24	0,022	0,558	0,022	0,558	0,02476	0,628
25	0,020	0,508	0,020	0,508	0,02204	0,559
26	0,018	0,457	0,018	0,457	0,01961	0,498
27	0,0164	0,416	0,016	0,406	0,01745	0,443
28	0,0148	0,375	0,014	0,355	0,01264	0,396
29	0,0136	0,345	0,013	0,330	0,01390	0,353
30	0,0124	0,314	0,012	0,304	0,01230	0,312
31	0,0116	0,294	0,010	0,254	0,01100	0,279
32	0,0108	0,274	0,009	0,228	0,00980	0,248
33	0,0100	0,254	0,008	0,203	0,00870	0,220
34	0,0092	0,233	0,007	0,177	0,00770	0,195
35	0,0084	0,213	0,005	0,127	0,00690	0,175
36	0,0076	0,193	0,004	0,101	0,00610	0,154
37	0,0068	0,172	_		0,00540	0,137
38	0,0060	0,152	-	-	0,00480	0,121
39	0,0052	0,132	-	-	0,00430	0,109
40	0,0048	0,121			0,00386	0,098
41	0,0044	0,111	-	2	0,00343	0,087
42	0,0040		1	-	0,00306	0,077
		0,101		-		
43	0,0036	0,091	-	-	0,00272	0,069
44	0,0032	0,081	-		0,00242	0,061
45	0,0028	0,071	-		0,00215	0,054
46	0,0024	0,060	-	-	0,00192	0,048
47	0,0020	0,050	÷.	-	0,00170	0,043
48	0,0016	0,040	-	-	0,00152	0,038
	-/	-1-1-			Standard.	

Tabla de galgas «AWG» Table of gages «AWG» Tableau des freins de moyeux "AWG" *"AWG"-Lehren-Tabelle*

AWG (B&S) números AWG (B &S) numbers	Diámetro nominal (mm) Nominal diameter mm	Sección nominal (mm ²) Nominal section mm ²	Peso nominal (Kg/Km) Nominal weight (Kg/Km)	Resistencia a 20 °C (Ohms/Km) Resistance at 20 °C (Ohms/Km)
N° AWG	Diamètre nominal mm	Section nominale	Poids nominal Kg/Km	Résistance à 20°C Ohms/Km
AWG (B&S) Anzahl	Durchmesser nominal (mm)	Querschnitt nominal (mm ²)	Nominalgewicht (kg/km)	Widerstand bei 20 °C (Ohm/km)
4/0	11,68	107,2	953,19	0,1608
3/0	10,40	85,03	755,86	0,2028
2/0	9,266	67,43	599,46	0,2556
1/0	8,252	53,48	475,50	0,3225
1	7,348	42,41	376,96	0,4065
2	6,544	33,63	299,00	0,5128
3	5,827	26,67	237,07	0,6463
4	5,189	21,15	188,11	0,8153
5	4,621	16,77	149,13	1,028
6	4,115	13,30	118,27	1,296
7	3,665	10,55	93,775	1,634
8	3,264	8,366	74,383	2,061
9	2,906	6,632	58,965	2,599
10	2,588	5,261	46,789	3,256
11	2,305	4,172	37,093	4,134
12	2,053	3,309	29,426	5,210
13	1,828	2,624	23,335	6,571
15	1,450	1,650	14,668	10,45
16	1,291	1,309	11,232	13,18
17	1,150	1,038		16,61
18			9,2281	
19	1,024	0,8232	8,5171	20,95
	0,9116	0,6527	5,803	26,39
20 21	0,8118	0,5176	4,602	33,30
	0,7229	0,4105	3,649	41,99
22	0,6439	0,3255	2,895	52,95
23	0,5733	0,2582	2,295	66,80
24	0,5105	0,2047	1,820	84,22
25	0,4547	0,1624	1,444	106,20
26	0,4049	0,1288	1,145	133,9
27	0,3607	0,1021	0,9079	168,9
28	0,3211	0,0809	0,7199	212,9
29	0,2859	0,0642	0,5708	268,6
30	0,2547	0,0509	0,4527	338,6
31	0,2268	0,0404	0,3591	426,6
32	0,2019	0,0320	0,2847	538,4
33	0,1798	0,0254	0,2258	678,8
34	0,1601	0,0211	0,1790	856
35	0,1426	0,0160	0,1420	1.079
36	0,1270	0,0127	0,1127	1.360
37	0,1131	0,0100	0,0893	1.716
38	0,1007	0,0080	0,0708	2.164
39	0,0897	0,0063	0,0561	2.729
40	0,0799	0,0050	0,0445	3.442
41	0,0711	0,0040	0,0353	4.310
42	0,0632	0,0032	0,0279	5.454
43	0,0564	0,0025	0,0222	6.852
44	0,0503	0,0020	0,0177	8.621
45	0,0447	0,0015	0,0139	11.135

Prefijos para las unidades Unities prefixes Préfixes des Unités Vorzeichen							
Factor por el que debe multiplicarse la unidad Factor to multiply the unit Facteur multipliant l'unité Multiplikations-Faktor pro Einheit	Prefijo Prefixe Préfixe Vorzeichen	Símbolo Symbol Symbole Symbol					
10 ¹²	tera	T					
109	giga	G					
106	mega	м					
10 ³	kilo	k					
102	hecto	h					
10	deca	da					
10-1	deci	d					
10-2	centi	c					
10 ⁻³	mili	m					
10-6	micro	μ					
10-9	nano	n					
10 ⁻¹⁹	pico	p					
10 ⁻¹⁵	femto	f					
10 ⁻¹⁸	atto	а					

Rela	ción entre las unidades de trabajo y potencia
Re	lation between the working and potency unities
Re	lation entre les Unités de travail et de puissance
	Verhältnis zwischen Arbeitseinheit und Potenz

(1) Trabajo/Work (1) Travail/Arbeit	kgm	CVh	kWh	kcal	BTU
1 kgm	1	3.7.10-6	2.72.10-6	2.34.10-3	9.3.10 ⁻³
1 CVh	2.27.106	1	0.736	632	2509
1kWh	0.37.106	1.36	1	860	3417
1 kcal	427	1.58.10-3	1.16.10-3	1	3,97
1 BTU	107.65	0.399.10 ⁻³	0.29.10-3	0.252	1
(2) Potencia/Potency (2) Puissance/Potenz	kgm/s	CV	kW	kcal/s	BTU/s
1 kgm/s	1	13.3.10-3	9.81.10-3	2.34.10-3	9.3.10-3
1 CV	75	1	0.736	0.176	0.702
1 kW	102	1.36	1	0.239	0.953
1 kcal/s	427	5.69	4.19	1	3,97
1 BTU/s	107.65	1.43	1.05	0.252	1

Principales unidades eléctricas Principal electric unities Principales Unités électriques Die wichtigsten elektrischen Einheiten

Magnitud Magnitude Valeur Grösse	Unidad Unity Unité Einheit	Símbolo Symbol Symbole Symbol		
Tensión/Tension/Tension/Spannung	Voltio/Volt	v		
Intensidad de corriente/ <i>Current intensity</i> Intensité de courant/ <i>Stromstärke</i>	Amperio Ampère	A		
Resistencia/Resistance/Résistance/Widerstand	Ohmio/Ohm	Ω		
Resistividad/Resistivity/Résistivité/Spezifischer Widerstand	Ohm x mm ² / m	Ω mm ² /m		
Conductividad/Conductivity/Conductivité/Leitfähigkeit	Siemens	$S = 1/\Omega$		
Capacidad/Capacity/Capacité/Kapazität	Faradio/Farad	F		
Intensidad del campo eléctrico/ <i>Electric field's intensity</i> Intensité de champs électrique/ <i>Feldstärke</i>	Voltio/cm Volt / cm	V/cm		
Inductancia/Inductance/Inductance/Induktivität	Henrio/Henry	н		
Intensidad del campo magnético/ <i>Magnetic field intensity</i> Intensité de champs magnétique/ <i>Magnetfeldstärke</i>	Amperio/cm Ampère / cm	Av/cm		
Inducción magnética/Magnetic induction Induction magnétique/Magnetflussdichte	Gauss	G		
Cantidad de electricidad/Amount of electricity Quantité d'électricité/Elektrizitätsmenge	Culombio Coulomb	с		
Densidad de corriente/ <i>Current density</i> Densité de courant/ <i>Stromdichte</i>	Amp / cm ²	A/mm [♀]		
Frecuencia/Frequency/Fréquence/Frequenz	Herzio/Herz	Hz		
Trabajo/Work/Travail/Leistung Ki	lovatio hora/ <i>hour</i> /heure	kWh		
Potencia aparente/Apparent potency Puissance apparente/Scheinleistung	Kilovoltiamperio Kilovoltampère	kVA		
Potencia activa/Active potency/Puissance active/Wirkleistung	Kilovatio/Kilowatt	kW		
Potencia reactiva/Reactive potency/Puissance réactive/Blindleistung Kilovar				

Relación entre escalas de temperatura Relation between temperature scales Relation entre les échelles de température Verhältnis zwischen den Temperaturskalen

Denominación Denomination Dénomination Bezeichnung	Abreviaturas Abridgment Symbole Abkürzung	Conversión en grados centígrados Conversion in °C Conversion en degré Celsius Umwandlung in Grad Celsius		
Grado Fahrenheit	°F	5/9 (F-32°)		
Grado Centígrado	°C	1		
Grado Kelvin	°K	K-273,16°		

Tabla de medida sección y peso de alambres y barras Measuring table section and weight of wires and bars Tableau de mesure de sections et poids des fils et barres Masstabelle der Querschnitte und Gewichte von Drahten und Schienen

mm	mm ²	gr/m	mm	mm ²	gr/m
0,15	0,0176715	0,157	1,40	1,53938	13,70
0,16	0,0201062	0,179	1,60	2,01062	17,89
0,17	0,0226980	0,202	1,80	2,54469	22,65
0,18	0,0254469	0,226	2,00	3,14159	27,96
0,19	0,0283529	0,252	2,20	3,80133	33,83
0,20	0,0314159	0,280	2,25	3,97608	35,39
0,21	0,0346361	0,308	2,50	4,90874	43,69
0,22	0,0380133	0,338	2,80	6,15752	54,80
0,23	0,0415476	0,370	3,00	7,06858	62,91
0,24	0,0452389	0,403	3,80	9,62113	85,63
0,25	0,0490874	0,437	4,00	12,5664	118,8
0,28	0,0615752	0,548	4,50	15,9043	141,5
0,32	0,0804248	0,716	5,00	19,6350	174,8
0,35	0,0962113	0,856	5,80	23,7583	211,5
0,40	0,125664	1,118	6,00	28,2743	251,6
0,45	0,159043	1,415	6,50	33,1831	295,3
0,50	0,196350	1,748	7,00	38,4845	342,5
0,55	0,237583	2,114	8,00	50,2655	447,4
0,60	0,282743	2,516	9,00	63,6173	566,2
0,65	0,331831	2,953	10,00	78,5398	699,0
0,80	0,502655	4,474	12,00	113,097	1006
0,85	0,567450	5,050	15,00	176,715	1573
0,90	0,636173	5,662	18,00	254,469	2265
0,95	0,708822	6,309	20,00	314,159	2796
1,00	0,785398	6,990	25,00	490,874	4369
1,10	0,950332	8,458	30,00	706,858	6291
1,20	1,13097	10,07	35,00	968,113	8616